Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1139118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008785

RESUMO

Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.

2.
Nat Biomed Eng ; 3(11): 930-942, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31110290

RESUMO

Preclinical studies of psychiatric disorders use animal models to investigate the impact of environmental factors or genetic mutations on complex traits such as decision-making and social interactions. Here, we introduce a method for the real-time analysis of the behaviour of mice housed in groups of up to four over several days and in enriched environments. The method combines computer vision through a depth-sensing infrared camera, machine learning for animal and posture identification, and radio-frequency identification to monitor the quality of mouse tracking. It tracks multiple mice accurately, extracts a list of behavioural traits of both individuals and the groups of mice, and provides a phenotypic profile for each animal. We used the method to study the impact of Shank2 and Shank3 gene mutations-mutations that are associated with autism-on mouse behaviour. Characterization and integration of data from the behavioural profiles of Shank2 and Shank3 mutant female mice revealed their distinctive activity levels and involvement in complex social interactions.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/psicologia , Comportamento Animal , Aprendizado de Máquina , Proteínas do Tecido Nervoso/genética , Animais , Pesquisa Comportamental , Modelos Animais de Doenças , Feminino , Masculino , Camundongos/genética , Camundongos/psicologia , Camundongos Knockout/genética , Camundongos Knockout/psicologia , Proteínas dos Microfilamentos , Mutação , Fenótipo , Comportamento Social , Gravação em Vídeo
3.
Front Mol Neurosci ; 11: 365, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337855

RESUMO

Mouse models of autism can be used to study evolutionarily conserved mechanisms underlying behavioral abnormalities in social communication and repetitive behaviors. SHANK genes code for synaptic scaffolding proteins at excitatory synapses and mutations in all SHANK genes have been associated with autism. Here, we present three behavioral aspects of the mutant mice deleted for exon 16 in Shank2. First, we treated Shank2 mutant mice with methylphenidate to rescue the hyperactivity. Our failure to do so suggests that the hyperactivity displayed by Shank2 mutant mice is not related to the one displayed by the typical mouse models of hyperactivity, and might be more closely related to manic-like behaviors. Second, by testing the effect of group housing and social isolation on social interest, we highlighted that Shank2 mutant mice lack the typical flexibility to modulate social interest, in comparison with wild-type littermates. Finally, we established a new protocol to test for social recognition in a social context. We used this protocol to show that Shank2 mutant mice were able to discriminate familiar and unknown conspecifics in free interactions. Altogether, these studies shed some light on specific aspects of the behavioral defects displayed by the Shank2 mouse model. Such information could be used to orient therapeutic strategies and to design more specific tests to characterize the complex behavior of mouse models of autism.

4.
J Vis Exp ; (112)2016 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-27341321

RESUMO

Mice emit ultrasonic vocalizations in different contexts throughout development and in adulthood. These vocal signals are now currently used as proxies for modeling the genetic bases of vocal communication deficits. Characterizing the vocal behavior of mouse models carrying mutations in genes associated with neuropsychiatric disorders such as autism spectrum disorders will help to understand the mechanisms leading to social communication deficits. We provide here protocols to reliably elicit ultrasonic vocalizations in pups and in adult mice. This standardization will help reduce inter-study variability due to the experimental settings. Pup isolation calls are recorded throughout development from individual pups isolated from dam and littermates. In adulthood, vocalizations are recorded during same-sex interactions (without a sexual component) by exposing socially motivated males or females to an unknown same-sex conspecific. We also provide a protocol to record vocalizations from adult males exposed to an estrus female. In this context, there is a sexual component in the interaction. These protocols are established to elicit a large amount of ultrasonic vocalizations in laboratory mice. However, we point out the important inter-individual variability in the vocal behavior of mice, which should be taken into account by recording a minimal number of individuals (at least 12 in each condition). These recordings of ultrasonic vocalizations are used to evaluate the call rate, the vocal repertoire and the acoustic structure of the calls. Data are combined with the analysis of synchronous video recordings to provide a more complete view on social communication in mice. These protocols are used to characterize the vocal communication deficits in mice lacking ProSAP1/Shank2, a gene associated with autism spectrum disorders. More ultrasonic vocalizations recordings can also be found on the mouseTube database, developed to favor the exchange of such data.


Assuntos
Comportamento Social , Vocalização Animal , Acústica , Animais , Feminino , Masculino , Camundongos , Ultrassom , Gravação em Vídeo
5.
PLoS One ; 10(3): e0121802, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806942

RESUMO

Social communication is heavily affected in patients with neuropsychiatric disorders. Accordingly, mouse models designed to study the mechanisms leading to these disorders are tested for this phenotypic trait. Test conditions vary between different models, and the effect of these test conditions on the quantity and quality of social interactions and ultrasonic communication is unknown. The present study examines to which extent the habituation time to the test cage as well as the shape/size of the cage influence social communication in freely interacting mice. We tested 8 pairs of male mice in free dyadic social interactions, with two habituation times (20 min and 30 min) and three cage formats (rectangle, round, square). We tested the effect of these conditions on the different types of social contacts, approach-escape sequences, follow behavior, and the time each animal spent in the vision field of the other one, as well as on the emission of ultrasonic vocalizations and their contexts of emission. We provide for the first time an integrated analysis of the social interaction behavior and ultrasonic vocalizations. Surprisingly, we did not highlight any significant effect of habituation time and cage shape/size on the behavioral events examined. There was only a slight increase of social interactions with the longer habituation time in the round cage. Remarkably, we also showed that vocalizations were emitted during specific behavioral sequences especially during close contact or approach behaviors. The present study provides a protocol reliably eliciting social contacts and ultrasonic vocalizations in adult male mice. This protocol is therefore well adapted for standardized investigation of social interactions in mouse models of neuropsychiatric disorders.


Assuntos
Comunicação Animal , Relações Interpessoais , Comportamento Social , Vocalização Animal/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ultrassom/métodos
6.
Behav Brain Res ; 256: 677-89, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23994547

RESUMO

Mouse ultrasonic vocalisations have been often used as a paradigm to extrapolate vocal communication defects observed in patients with autism spectrum disorders (ASD). The role of these vocalisations as well as their development, structure and informational content, however, remain largely unknown. In the present study, we characterised in depth the emission of pup and adult ultrasonic vocalisations of wild-type mice and their ProSAP1/Shank2(-/-) littermates lacking a synaptic scaffold protein mutated in ASD. We hypothesised that the vocal behaviour of ProSAP1/Shank2(-/-) mice not only differs from the vocal behaviour of their wild-type littermates in a quantitative way, but also presents more qualitative abnormalities in temporal organisation and acoustic structure. We first quantified the rate of emission of ultrasonic vocalisations, and analysed the organisation of vocalisations sequences using Markov models. We subsequently measured duration and peak frequency characteristics of each ultrasonic vocalisation, to characterise their acoustic structure. In wild-type mice, we found a high level of organisation in sequences of ultrasonic vocalisations, suggesting a communicative function in this complex system. Very limited significant sex-related variations were detected in their usage and acoustic structure, even in adult mice. In adult ProSAP1/Shank2(-/-) mice, we found abnormalities in the call usage and the structure of ultrasonic vocalisations. Both ProSAP1/Shank2(-/-) male and female mice uttered less vocalisations with a different call distribution and at lower peak frequency in comparison with wild-type littermates. This study provides a comprehensive framework to characterise abnormalities of ultrasonic vocalisations in mice and confirms that ProSAP1/Shank2(-/-) mice represent a relevant model to study communication defects.


Assuntos
Transtorno Autístico/fisiopatologia , Vocalização Animal/fisiologia , Animais , Transtorno Autístico/genética , Modelos Animais de Doenças , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética
7.
FASEB J ; 26(10): 3969-79, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22730440

RESUMO

Antibodies normally do not cross the blood-brain barrier (BBB) and cannot bind an intracellular cerebral antigen. We demonstrate here for the first time that a new class of antibodies can cross the BBB without treatment. Camelids produce native homodimeric heavy-chain antibodies, the paratope being composed of a single-variable domain called VHH. Here, we used recombinant VHH directed against human glial fibrillary acidic protein (GFAP), a specific marker of astrocytes. Only basic VHHs (e.g., pI=9.4) were able to cross the BBB in vitro (7.8 vs. 0% for VHH with pI=7.7). By intracarotid and intravenous injections into live mice, we showed that these basic VHHs are able to cross the BBB in vivo, diffuse into the brain tissue, penetrate into astrocytes, and specifically label GFAP. To analyze their ability to be used as a specific transporter, we then expressed a recombinant fusion protein VHH-green fluorescent protein (GFP). These "fluobodies" specifically labeled GFAP on murine brain sections, and a basic variant (pI=9.3) of the fusion protein VHH-GFP was able to cross the BBB and to label astrocytes in vivo. The potential of VHHs as diagnostic or therapeutic agents in the central nervous system now deserves attention.


Assuntos
Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Anticorpos de Domínio Único/metabolismo , Animais , Astrocitoma/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/imunologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Plasmodium berghei/patogenicidade , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia
8.
Nature ; 486(7402): 256-60, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22699619

RESUMO

Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3αß(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno Autístico/genética , Comportamento Animal/fisiologia , Proteínas do Tecido Nervoso/genética , Agitação Psicomotora/genética , Animais , Transtorno Autístico/patologia , Espinhas Dendríticas/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agitação Psicomotora/patologia , Receptores Ionotrópicos de Glutamato/metabolismo , Sinapses/metabolismo , Regulação para Cima , Vocalização Animal/fisiologia
9.
PLoS Pathog ; 5(2): e1000315, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19247444

RESUMO

Human neurons express the innate immune response receptor, Toll-like receptor 3 (TLR3). TLR3 levels are increased in pathological conditions such as brain virus infection. Here, we further investigated the production, cellular localisation, and function of neuronal TLR3 during neuronotropic rabies virus (RABV) infection in human neuronal cells. Following RABV infection, TLR3 is not only present in endosomes, as observed in the absence of infection, but also in detergent-resistant perinuclear inclusion bodies. As well as TLR3, these inclusion bodies contain the viral genome and viral proteins (N and P, but not G). The size and composition of inclusion bodies and the absence of a surrounding membrane, as shown by electron microscopy, suggest they correspond to the previously described Negri Bodies (NBs). NBs are not formed in the absence of TLR3, and TLR3(-/-) mice -- in which brain tissue was less severely infected -- had a better survival rate than WT mice. These observations demonstrate that TLR3 is a major molecule involved in the spatial arrangement of RABV-induced NBs and viral replication. This study shows how viruses can exploit cellular proteins and compartmentalisation for their own benefit.


Assuntos
Corpos de Inclusão Viral , Neurônios/virologia , Vírus da Raiva/fisiologia , Raiva/patologia , Raiva/virologia , Receptor 3 Toll-Like/metabolismo , Animais , Compartimento Celular , Células Cultivadas , Interpretação Estatística de Dados , Endossomos/metabolismo , Endossomos/virologia , Humanos , Corpos de Inclusão Viral/imunologia , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Viral/virologia , Estimativa de Kaplan-Meier , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Neurônios/metabolismo , Nucleocapsídeo/metabolismo , Raiva/imunologia , Raiva/metabolismo , Receptor 3 Toll-Like/genética , Replicação Viral
10.
Anesthesiology ; 109(5): 790-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18946289

RESUMO

BACKGROUND: Preexisting cognitive impairment and advanced age are factors that increase the risk of developing postoperative cognitive dysfunction. Because anesthetic agents interfere with cholinergic transmission and as impairment of cholinergic function is associated with cognitive decline, the authors studied how the volatile anesthetic sevoflurane affects exploratory and anxiety-like behavior in young and aged animals with a genetically modified cholinergic system. METHODS: Young and aged wild-type and mutant mice lacking the beta2 subunit of the nicotinic cholinergic receptor (beta2KO) were anesthetized for 2 h with 2.6% sevoflurane in oxygen and compared with nonanesthetized controls. Locomotor activity and organization of movement in the open field model were assessed before and 24 h after anesthesia. Locomotor activity and anxiety-like behavior in the elevated plus maze were assessed 24 h after anesthesia. High- and low-affinity nicotinic receptor and cholinergic uptake site densities were evaluated in the hippocampus, amygdala, and forebrain regions using receptor autoradiography. RESULTS: Sevoflurane anesthesia significantly reduced locomotor activity, altered temporospatial organization of trajectories, and increased anxiety-like behavior in young beta2KO mice, whereas no such changes were observed in young wild-type mice. Aged wild-type and beta2KO mice displayed reactions that were similar, but not identical, to the reactions of young mice to sevoflurane anesthesia. However, behavioral changes were not associated with differences in nicotinic receptor or cholinergic uptake site densities. CONCLUSION: In conclusion, sevoflurane anesthesia altered exploratory and anxiety-like behavior in mice lacking the beta2 nicotinic acetylcholine receptor subunit.


Assuntos
Anestesia/efeitos adversos , Ansiedade/induzido quimicamente , Comportamento Exploratório/efeitos dos fármacos , Éteres Metílicos/efeitos adversos , Subunidades Proteicas/deficiência , Receptores Nicotínicos/deficiência , Fatores Etários , Animais , Ansiedade/genética , Ansiedade/metabolismo , Comportamento Exploratório/fisiologia , Masculino , Éteres Metílicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Subunidades Proteicas/genética , Receptores Nicotínicos/genética , Sevoflurano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...